C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts

نویسندگان

  • Marie-Line Bortolin-Cavaillé
  • Marie Dance
  • Michel Weber
  • Jérôme Cavaillé
چکیده

MicroRNAs are tiny RNA molecules that play important regulatory roles in a broad range of developmental, physiological or pathological processes. Despite recent progress in our understanding of miRNA processing and biological functions, little is known about the regulatory mechanisms that control their expression at the transcriptional level. C19MC is the largest human microRNA gene cluster discovered to date. This 100-kb long cluster consists of 46 tandemly repeated, primate-specific pre-miRNA genes that are flanked by Alu elements (Alus) and embedded within a approximately 400- to 700-nt long repeated unit. It has been proposed that C19MC miRNA genes are transcribed by RNA polymerase III (Pol-III) initiating from A and B boxes embedded in upstream Alu repeats. Here, we show that C19MC miRNAs are intron-encoded and processed by the DGCR8-Drosha (Microprocessor) complex from a previously unidentified, non-protein-coding Pol-II (and not Pol-III) transcript which is mainly, if not exclusively, expressed in the placenta.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Features of Mammalian microRNA Promoters Emerge from Polymerase II Chromatin Immunoprecipitation Data

BACKGROUND MicroRNAs (miRNAs) are short, non-coding RNA regulators of protein coding genes. miRNAs play a very important role in diverse biological processes and various diseases. Many algorithms are able to predict miRNA genes and their targets, but their transcription regulation is still under investigation. It is generally believed that intragenic miRNAs (located in introns or exons of prote...

متن کامل

MicroRNAs Regulated Brain Tumor Cell Phenotype and Their Therapeutic Potential

MicroRNAs (miRNAs)are short 18–25 nucleotide small non-coding RNA molecules that function to silence gene expression via sophisticated post-transcriptional regulation[1]. Since their discovery in the early 1990s, these small molecules have been shown to play an important regulatory role in a wide range of biological and pathological processes. Over 30% of human messenger RNAs (mRNAs) are regula...

متن کامل

Dhir, Ashish and Dhir, Somdutta and Proudfoot, Nick J. and Jopling, Catherine L. (2015) Microprocessor mediates transcriptional termination of long noncoding RNA

MicroRNA (miRNA) play a major role in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with co-transcriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. While most miRNA are located within introns of protein coding genes, a substantial minority of miRNA originate from long non coding (lnc) RNA where transcript proc...

متن کامل

Small regulatory RNAs in mammals.

Mammalian cells harbor numerous small non-protein-coding RNAs, including small nucleolar RNAs (snoRNAs), microRNAs (miRNAs), short interfering RNAs (siRNAs) and small double-stranded RNAs, which regulate gene expression at many levels including chromatin architecture, RNA editing, RNA stability, translation, and quite possibly transcription and splicing. These RNAs are processed by multistep pa...

متن کامل

LIPCAR: a mitochondrial lnc in the noncoding RNA chain?

All proteins are translated from RNA, but only a fraction of RNAs seem to be translated into proteins. Advanced genomics technologies have uncovered noncoding regulatory RNAs exhibiting extraordinary diversity in size, structure, and molecular function. We know a great deal about small (≈20 nucleotides) microRNAs that post-transcriptionally regulate translation of protein from target mRNAs havi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2009